\sim	_	
()	7	
w		١,

An air-filled parallel-plate capacitor and a resistor are connected in series across the terminals of a battery.

The plates of the capacitor are then moved further apart.

This change results in

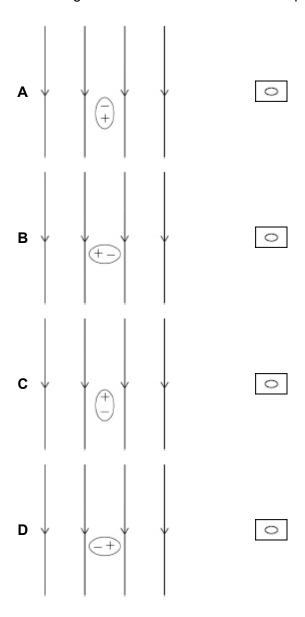
А	capacitor plates	0
В	a decrease in the charge held on the capacitor plates	0
С	an increase in the energy stored on the capacitor	0
D	an increase in the capacitance of the capacitor	0

(Total 1 mark)

Q2.

Which is equal to ε_0 ?

- A the relative permittivity of a vacuum

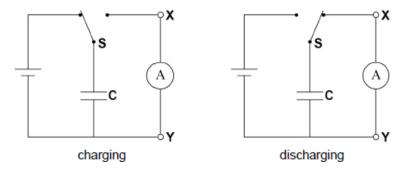

 B the charge stored on a capacitor consisting of two parallel plates of area 1 m² separated by 1 m when the
- the work done when moving a 2 C charge from infinity to a distance of π m from the centre of a metal sphere that carries 2 C of charge
- f D the charge on a metal sphere which experiences a force of 1 N when its centre is placed 1 m from the centre of a metal sphere that carries 1 C of charge

potential difference between the plates is 1 V

Q3.

A polar molecule is in an external electric field.

Which diagram shows the orientation of the polar molecule?



Q4.

A switch ${\bf S}$ allows capacitor ${\bf C}$ to be completely charged by a cell and then completely discharged through an ammeter.

The emf of the cell is $4.0\ V$ and it has negligible internal resistance.

The capacitance of C is $0.40~\mu F$ and there are 8000 charge–discharge cycles every second.

What are the magnitude and direction of the average conventional current in the ammeter?

	Magnitude of current / A	Direction of current	
Α	1.3 × 10 ⁻²	X to Y	0
В	1.3 × 10 ⁻²	Y to X	0
С	2.0×10^{-10}	X to Y	0
D	2.0×10^{-10}	Y to X	0

(Total 1 mark)

Q5.

A $30~\mu F$ capacitor is charged by connecting it to a battery of emf 4.0~V. The initial charge on the capacitor is Q_0 .

The capacitor is then discharged through a $500\;k\Omega$ resistor.

The time constant for the circuit is T.

Which is correct?

Α	<i>T</i> is 15 ms.	0
В	Q_0 is $12~\mu\mathrm{C}$.	0
С	After a time T the pd across the capacitor is $1.5~\mathrm{V}.$	0
D	After a time $2T$ the charge on the capacitor is Q_0e^2 .	0

Q6.

Capacitor **X** of capacitance C has square plates of side length l and separation d and is made with a dielectric of relative permittivity ε .

Capacitor **Y** has square plates of side length 3l and separation $\frac{d}{3}$ and is made with a dielectric of relative permittivity $\frac{\varepsilon}{3}$.

What is the capacitance of Y?

- A $\frac{C}{27}$
- 0
- $B = \frac{C}{9}$
- 0
- **c** 9*C*
- 0
- **D** 27*C*
- 0

(Total 1 mark)

Q7.

A parallel plate capacitor is connected across a battery and the energy stored in the capacitor is E.

Without disconnecting the battery, the separation of the plates is halved.

What is the energy now stored in the capacitor?

- A 0.5E
- 0
- \mathbf{B}
- 0
- **c** 2*E*
- **D** 4E
- 0

Q8.

A fully charged capacitor of capacitance $2.0\ mF$ discharges through a $15\ k\Omega$ resistor.

What fraction of the stored energy remains after $1.0\ \mathrm{minute}$?

- $A = \frac{1}{4}$
- $B \frac{1}{a^2}$
- c $\frac{1}{16}$
- D $\frac{1}{e^4}$